

MAJLIS PENGETUA SEKOLAH MALAYSIA

(CAWANGAN PULAU PINANG)

MODUL LATIHAN BERFOKUS SPM 2019 4531/2(PP)

FIZIK

Kertas 2

PERATURAN PEMARKAHAN

UNTUK KEGUNAAN PEMERIKSA SAHAJA

AMARAN

Peraturan pemarkahan ini adalah SULIT dan Hak Cipta MPSM Pulau Pinang. Kegunaannya khusus untuk pemeriksa yang berkenaan sahaja. Sebarang maklumat dalam peraturan pemarkahan ini tidak boleh dimaklumkan kepada sesiapa. Peraturan pemarkahan ini tidak boleh dikeluarkan dalam apaapa bentuk media.

Peraturan pemarkahan ini mengandungi 10 halaman bercetak

				MARK		
NO		MARKING SCHEME		TOTAL		
1	(a)	Conductor that can conduct electric current better than insulator not as good as metal conductor	1	1		
	(b)	Arsenic / phosphorus / Antimony (any pentavalent atom)	1	1		
	(c) (i)	n-type	1	1		
	(c)(ii)	doping	1	1		
				4		
2	(a)	Force that oppose the motion.	1	1		
-	(b)(i)	F=0 N	1	1		
	(b)(ii)	35 N + 85 N	1	2		
		120 N	1			
	(c)	increase	1	1		
_				5		
3	(a)	Energy that transfers from one object to another that are in thermal contact because of a temperature difference.	1	1		
	(b)	 M1 Canned drinks release heat to ice while ice absorbs heat from canned drinks. M2 The temperature of canne drinks decreases until thermal equilibrium is achieved. M3 The nett heat flows between ice and canned drinks is equal to zero when thermal equilibrium is achieved. [Maximum 2 marks] 		2		
	(c)	0 °C [Answer with unit]	1	1		
_	(d)	$Q_f = mL_f$				

		$318 \times 10^3 = m(3.36 \times 10^5)$	1	
		m = 0.946 kg	1	2
				6
4	(a)	Current amplifier	1	1
	(b)	Diode	1	1
	(c)	 M1 During the dark, the resistance of LDR is high. The base voltage is high and transistor is switched on. M2 Base current flows in base circuit causes higher collector current flows in collector circuit. The electromagnetic switch is switched on. M3 Current flows in secondary circuit and the streetlights are switched on. [Maximum 2 marks] 	2	2
	(d)	The voltage from the batteries (6V) is not high enough to switch on the streetlights (450V). // The streetlights need 450 V to switch on.	1	1
	(e)	$V_{\rm TU} = \left(\frac{32 \times 10^3}{(8 \times 10^3) + (32 \times 10^3)}\right) (6)$ = 4.8 V	1	2
				7
5	(a)	Pascal's Principle	1	1
	(b)	 M1 When the small piston is pressed down, the pressure is exerted on the liquid and transmits uniformly to the large piston M2 The larger force is produced at large piston pushes the chair up // Force is multiplied at large piston and push the chair up 	2	2

2
L
2
8
8
1
2
2
2

	(iii)	Thicker wire	1	
		Lower resistance, higher current.	1	2
	(c)(i)	Step-down transformer	1	1
	(ii)	$\frac{240}{6} = \frac{2000}{N_{\rm S}}$	1	
		$N_{S} = 50$	1	2
				10
8	(a)	Hooke's law	1	1
	(b)(i)	(2)(10) = k(0.04)	1	2
		$k = 500 \text{ N m}^{-1}$	1	2
	(ii)	$E = \frac{1}{2}(500)(0.04)^2$	1	
		= 0.4 J	1	2
	(c)(i)	Spring arranges in parallel	1	
		Higher spring constant// Stiffer spring// Withstand larger weight with same extension of spring	1	2
	(ii)	Thicker wire	1	
		Higher spring constant// Stiffer spring// Withstand larger weight with same extension of spring	1	2
	(iii)	Smaller diameter of spring coil	1	
		Higher spring constant// Stiffer spring// Withstand larger weight with same extension of spring	1	2
	(d)	T	1	2
				11

9	(a)(i)	Angle between incident ray and normal line	1	1
_	(a)(ii)	M1 Increase the angle of incidence, i, then angle of refraction, r will also increase		
		M2 Keep on increasing the angle of incidence until angle of refraction is 90°		
		M3 The angle of incidence is called critical angle		
		M4 Increase the angle of of incidence more than the critical angle	4	4
		M5 The ray will be reflected.		
		[Max : 4marks]		
	(b)	M1 Density diagram 9.2 < density diagram 9.3		
		M2 Refractive index 9.2 < Refractive index 9.3		
		M3 Angle of refraction in diagram 9.2 > angle of refraction in diagram 9.3		
		M4 The higher the density the smaller the angle of refraction		
		M5 The higher the refractive index the smaller the angle of refraction.	5	5

	(C)			
		Suggestion Explanation		
		Use refractive index of outer layer is less than the refractive index of inner layer		
		Use high flexibility material so that it can be e	easily bend 1+1	
		Use strong material do not break easi	ly 1+1	
		Use thin material Lighter // can be used and the small area	used in 1+1	
		Low density material Lighter // lower ma	ass 1+1	10
				20
10	(a)(i)	Nuclear fusion is a process of combining two lighter form a heavier nucleus.	er nuclei to 1	1
	(a)(ii)	 M1 The number of neutrons produced is the sareactions. M2 The quantity of energy released in Diagram M3 The mass defect in Diagram 10.1 > 10.2 		
		 M4 Conservation energy M5 The bigger the mass defect, the larger the energy released 	quantity of	5
	(b)(i)	Nuclear fission	1	1
	(b)(ii)	M1 A neutron bombards a uranium nucleus to p neutrons and energy.	produce two	
		M2 The new neutron bombards another new ur nuclues	ranium 3	

		M3 The differences in mass isM4 The energy released is given by	s converted to energy ven by the equation E=mc ² .		3
			[Maximum 3 marks]		
	(c)	Characteristic Boron control rod	Reason To absorb some of the neutrons.// Control the chain reaction	1+1	
		Graphite moderator	To slow down high speed neutrons	1+1	
		Heavy water for cooling agent	High specific heat capacity// Can absorb large amount of heat without high temperature increase	1+1	
		Heat exchanger pipe is longer/ has more loops	To increase the area where the heat is absorbed by water	1+1	
		Thick concrete	To prevent the leakage of radiation// Strong	1+1	10
					20
11	(a)(i)	Heat absorbed or the heat releas during the change of phase of a	1	1	
	(a)(ii)	M1 Water has a large specifi			
		M2 Steam comes out from th			
		M3 A large amount of latent h			
		Surroundings M4 We feel hot because of th	4	4	
		released to the surroundi			
	(b)(i)	Temperature, θ (°C) Suhu, θ (°C) 30 5 0	Time, t (hour)		
		1 mark – both axis with correct u	Masa, t (jam) nit	2	2
		1 mark – graph			

• •• ••	(b)(ii)	Heat absorbed , Q = m c	θ		1	
		= (0.2)(4.2×	$(10^3)(30-5)$		
		= 2.1>	1041		1	
		= 2.1>	<10 J	[Answer with unit]	1	3
((C)	Characteristic	Τ	Reason		
		Alcohol	Not is low	revent liquid freeze at -65°C // easy to freeze //Freezing point w // Suitable record perature at -65°C	2	
		Thin wall		e sensitive to heat // easy to h thermal equilibrium	2	
		Smaller diameter of capillary tube	More	e sensitive to heat		
		Thick glass-bore stem		ble // last longer	2	10
		E is chosen	-65°0	ause it has low freezing point < C, high boiling point > 20°C,	2	
			1	wall, smaller diameter of lary tube, thick glass-bore stem	2	
						20
12	(a)	Reflection of wave			1	1
	b(i)	Radiowave	<u>the also</u>	Sound wave		
		Transverse waves		Longitudinal waves		
		Can travel without mediu	Im	Need medium to travel	2	
		Long wavelength		Short wavelength		2
				[maximum 2 marks]		
	(ii)		water	molecules is closer compared	1	
		to air molecules. Thus, the sound energy can be transferred faster.				2
		Specifications	1	Reason		
		Longitudinal		Because sonar is a sound waves which is a longitudinal wave // need medium to propagate		
	с	High frequency	Has high energy // Higher penetrating power		10	10
		High speed	+	travel faster		10
		High penetrating power	easil			
		The most suitable waves is S		ause the waves is longitudinal, frequency , high penetrating		

	power and has high speed		
d(i)	$d = \frac{vt}{2}$	1	
	$=\frac{1500 x 1}{2 x 15}$	1	3
	= 50 m [Answer with unit]	1	
ii	M1 To detect the depth of seabed		
	M2 To detect the position of crude oil or sunken ship	2	
	M3 To detect the condition of baby in the womb.	Z	2
	[maximum 2 marks]		
			20